CONTENTS

Preface xi

1. INTRODUCTION 1

1.1 Embedded Processor: Micro Signal Architecture

1.2 Real-Time Embedded Signal Processing

1.3 Introduction to the Integrated Development Environment VisualDSP++
 1.3.1 Setting Up the VisualDSP++
 1.3.2 Using a Simple Program to Illustrate the Basic Tools
 1.3.3 Advanced Setup: Using the Blackfin BF533 or BF537 EZ-KIT

1.4 More Hands-on Experiments

1.5 System-Level Design using a Graphical Development Environment
 1.5.1 Setting up LabVIEW and the LabVIEW Embedded Module for Blackfin Processors

1.6 More Exercise Problems

2. TIME-DOMAIN SIGNALS AND SYSTEMS 31

2.1 Introduction

2.2 Time-Domain Digital Signals
 2.2.1 Sinusoidal Signals
 2.2.2 Random Signals

2.3 Introduction to Digital Systems
 2.3.1 Moving-Average Filters: Structures and Equations
 2.3.2 Digital Filters
2.3.3 Realization of FIR Filters

2.4 Nonlinear Filters

2.5 More Hands-on Experiments

2.6 Implementation of Moving-Average Filters using Blackfin Simulator

2.7 Implementation of Moving-Average Filters using BF533/BF537 EZ-KIT

2.8 Moving-Average Filter in LabVIEW Embedded Module for Blackfin Processors

2.9 More Exercise Problems

3. FREQUENCY-DOMAIN ANALYSIS AND PROCESSING

3.1 Introduction

3.2 The z-Transform

3.2.1 Definitions

3.2.2 System Concepts

3.2.3 Digital Filters

3.3 Frequency Analysis

3.3.1 Frequency Response

3.3.2 Discrete Fourier Transform

3.3.3 Fast Fourier Transform

3.3.4 Window Functions

3.4 More Hands-on Experiments

3.4.1 Simple Lowpass Filters

3.4.2 Design and Applications of Notch Filters

3.4.3 Design and Applications of Peak Filters

3.5 Frequency Analysis using Blackfin Simulator
3.6 Frequency Analysis using Blackfin BF533/BF537 EZ-KIT

3.7 Frequency Analysis using LabVIEW Embedded Module for Blackfin Processors

3.8 More Exercise Problems

4. DIGITAL FILTERING

4.1 Introduction

4.1.1 Ideal Filters

4.1.2 Practical Filter Specifications

4.2 Finite Impulse Response Filters

4.2.1 Characteristics and Implementation of FIR Filters

4.2.2 Design of FIR Filters

4.2.3 Hands-on Experiments

4.3 Infinite Impulse Response Filters

4.3.1 Design of IIR Filters

4.3.2 Structures and Characteristics of IIR Filters

4.3.3 Hands-on Experiments

4.4 Adaptive Filters

4.4.1 Structures and Algorithms of Adaptive Filters

4.4.2 Design and Applications of Adaptive Filters

4.4.3 More Hands-on Experiments

4.5 Adaptive Line Enhancer using Blackfin Simulator

4.6 Adaptive Line Enhancer using Blackfin BF533/BF537 EZ-KIT

4.7 Adaptive Linear Enhancer using LabVIEW Embedded Module for Blackfin Processors
4.8 More Exercise Problems

5. INTRODUCTION TO THE BLACKFIN PROCESSOR

5.1 Blackfin Processor: An Architecture for Embedded Media Processing

5.1.1 Introduction to Micro Signal Architecture

5.1.2 Overview of the Blackfin Processor

5.1.3 Architecture: Hardware Processing Units and Register Files

5.1.3.1 Data Arithmetic Unit

5.1.3.2 Address Arithmetic Unit

5.1.3.3 Control Unit

5.1.4 Bus Architecture and Memory

5.1.4.1 L1 Instruction Memory

5.1.4.2 L1 Data Memory

5.1.5 Basic Peripherals

5.2 Software Tools for the Blackfin Processor

5.2.1 Software Development Flow and Tools

5.2.2 Assembly Programming in the VisualDSP++

5.2.3 More Explanation on Linker

5.2.4 More Debugging Features

5.3 Introduction to FIR Filter-based Graphic Equalizer

5.4 Design of Graphic Equalizer using Blackfin Simulator

5.5 Implementation of Graphic Equalizer using BF533/BF537 EZ-KIT

5.6 Implementation of Graphic Equalizer using LabVIEW Embedded Module for Blackfin Processors
5.7 More Exercise Problems

6. REAL-TIME DSP FUNDAMENTALS AND IMPLEMENTATION
 CONSIDERATIONS 323

6.1 Number Formats used in the Blackfin Processor

 6.1.1 Fixed-Point Formats
 6.1.1.1 Binary Addition
 6.1.1.2 Binary Multiplication
 6.1.1.3 Binary Multiply-Add
 6.1.1.4 Truncation and Rounding of Multiplication Results

 6.1.2 Fixed-Point Extended Format

 6.1.3 Fixed-Point Data Types

 6.1.4 Emulation of Floating-Point Format
 6.1.4.1 Floating-Point Data Types
 6.1.4.2 Floating-Point Addition and Multiplication
 6.1.4.3 Normalization
 6.1.4.4 Fast Floating-Point Emulation

 6.1.5 Block Floating-Point Format

6.2 Dynamic Range, Precision, and Quantization Errors

 6.2.1 Incoming Analog Signal and Quantization

 6.2.2 Dynamic Range, Signal-to-Quantization Noise Ratio, and Precision

 6.2.3 Sources of Quantization Errors in Digital Systems
 6.2.3.1 Coefficient Quantization
 6.2.3.2 Computational Overflow
6.2.3.3 Truncation and Rounding

6.2.3.4 Overall Quantization Errors

6.3 Overview of Real-Time Processing

6.3.1 Real-Time Versus Off-Line Processing

6.3.2 Sample-by-Sample Processing Mode and Its Real-Time Constraints

6.3.3 Block Processing Mode and Its Real-Time Constraints

6.3.4 Performance Parameters for Real-Time Implementation

6.4 Introduction to IIR Filter-based Graphic Equalizer

6.5 Design of IIR Filter-based Graphic Equalizer using Blackfin Simulator

6.6 Design of IIR Filter-based Graphic Equalizer using BF533/BF537 EZ-KIT

6.7 Implementation of IIR Filter-based Graphic Equalizer using LabVIEW Embedded Module for Blackfin Processors

6.8 More Exercise Problems

7. MEMORY SYSTEM AND DATA TRANSFER

7.1 Overview of Signal Acquisition and Transfer to Memory

7.1.1 Understand the CODEC

7.1.2 Connecting AD1836A to BF533 Processor

7.1.3 Understand the Serial Port

7.2 DMA Operations and Programming

7.2.1 DMA Transfer Configuration

7.2.2 Setting Up the Autobuffer-Mode DMA

7.2.2.1 Setting Up the Buffer Address, DMA Count, and DMA Modify Registers

7.2.3 Memory DMA Transfer
7.2.4 Setting Up Memory DMA
7.2.5 Examples of using Memory DMA
7.2.6 Advanced Features of DMA

7.3 Using Cache in the Blackfin Processor
7.3.1 Cache Memory Concepts
7.3.2 Terminology in Cache Memory
7.3.3 Instruction Cache
7.3.4 Data Cache
7.3.5 Memory Management Unit

7.4 Comparing and Choosing between Cache and Memory DMA

7.5 Scratchpad Memory of the Blackfin Processor

7.6 Signal Generator using Blackfin Simulator
7.7 Signal Generator using BF533/BF537 EZ-KIT

7.8 Signal Generation using LabVIEW Embedded Module for Blackfin Processors

7.9 More Exercise Problems

8. CODE OPTIMIZATION AND POWER MANAGEMENT

8.1 Code Optimization

8.2 C Optimization Techniques
8.2.1 C Compiler in VisualDSP++
8.2.2 C Programming Consideration
8.2.2.1 Array versus Pointers
8.2.2.2 Using Loop Optimization Pragmas
8.2.2.3 Using Data Alignment Pragmas
8.2.2.4 Using Different Memory Banks
8.2.2.5 No Aliasing
8.2.2.6 Volatile and Static Data Types
8.2.2.7 Global versus Local Variables
8.2.2.8 Arithmetic Data Types
8.2.3 Using Intrinsics
8.2.4 In-lining
8.2.5 C/C++ Run-Time Library
8.2.6 DSP Run-Time Library
8.2.7 Profile-Guided Optimization
8.3 Using Assembly Code for Efficient Programming
8.3.1 Using Hardware Loop
8.3.2 Using Dual MACs
8.3.3 Using Parallel Instructions
8.3.4 Specialized Addressing Modes: Separate Data Sections
8.3.5 Using Software Pipelining
8.3.6 Summary of Execution Cycle Count and Code Size for FIR Filter Implementation
8.4 Power Consumption and Management in the Blackfin Processor
8.4.1 Computing System Power in the Blackfin Processor
8.4.2 Power Management in the Blackfin Processor
8.4.2.1 Processor Clock
8.4.2.2 Power Modes
8.4.2.3 Dynamic Voltage and Frequency Scaling

8.5 Sample-Rate Conversion using Blackfin Simulator
8.6 Sample-Rate Conversion using BF533/BF537 EZ-KIT
8.7 Sample-Rate Conversion using LabVIEW Embedded Module for Blackfin Processors
8.8 More Exercise Problems

9. PRACTICAL DSP APPLICATIONS: AUDIO CODING AND AUDIO EFFECTS

9.1 Overview of the Audio Compression
9.2 MP3/Ogg Vorbis Audio Encoding
9.3 MP3/Ogg Vorbis Audio Decoding
9.4 Implementation of Ogg Vorbis Decoding using BF537 EZ-KIT
9.5 Audio Effects
 9.5.1 3D Audio Effects
 9.5.2 Implementation of 3D Audio Effects using BF533/BF537 EZ-KIT
 9.5.3 Generating Reverberation Effects
 9.5.4 Implementation of Reverberation using BF533/BF537 EZ-KIT
9.6 Implementation of MDCT using LabVIEW Embedded Module for Blackfin Processors
9.7 More Application Projects

10. PRACTICAL DSP APPLICATIONS: DIGITAL IMAGE PROCESSING

10.1 Overview of Image Representation
10.2 Image Processing using BF533/BF537 EZ-KIT
10.3 Color Conversion
10.4 Color Conversion using BF533/BF537 EZ-KIT
10.5 Two-Dimensional Discrete Cosine Transform
10.6 Two-Dimensional DCT/IDCT using BF533/BF537 EZ-KIT
10.7 Two-Dimensional Filtering
 10.7.1 2D Filtering
 10.7.2 2D Filter Design
10.8 Two-Dimensional Filtering using BF533/BF537 EZ-KIT
10.9 Image Enhancement
 10.9.1 Gaussian White Noise and Linear Filtering
 10.9.2 Impulse Noise and Median Filtering
 10.9.3 Contrast Adjustment
10.10 Image Enhancement using BF533/BF537 EZ-KIT
10.11 Image Processing using LabVIEW Embedded Module for Blackfin Processors
10.12 More Application Projects

REFERENCES 663

APPENDIX A: An Introduction to Graphic Programming with LabVIEW 671
APPENDIX B: Useful Websites 704
APPENDIX C: List of Hands-on Experiments and Exercises 706
INDEX